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Equilibrium-restricted solid-on-solid growth model on fractal substrates
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The equilibrium-restricted solid-on-solid growth model on fractal substrates is studied by introducing a
fractional Langevin equation. The growth exponent 8 and the roughness exponent « defined, respectively, by
the surface width via W~ r# and the saturated width via W~ L®, L being the system size, were obtained by
a power-counting analysis, and the scaling relation 2a+d;=zgw was found to hold. The numerical simulation
data on Sierpinski gasket, checkerboard fractal, and critical percolation cluster were found to agree well with
the analytical predictions of the fractional Langevin equation.
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I. INTRODUCTION

Over the last several decades, there has been a consider-
able number of studies regarding the surface-roughening of
equilibrium and nonequilibrium interfaces using various con-
tinuum growth equations and discrete atomistic models
[1-4]. The surface-roughening phenomenon is associated
with a wide variety of other systems such as domain walls in
the two-dimensional (2D) random bond Ising model [5], ran-
domly stirred fluids [6], ballistic aggregation [7], and di-
rected polymer in a random potential [8,9].

The surface growth phenomena can be categorized into
various universality classes [1-4]. The most prominent and
well-known one of them is the Kardar-Parisi-Zhang (KPZ)
class, for which the growth can be described by a continuum
equation, given as [8]

dh

N -
= vW2h + E(Vh)2 + (7.1, (1)

where 7 is the Gaussian random variable which satisfies
<7](F’t)7](f)l9t,):2F5(F_ F’)(S(t_t’) > (2)

with T' describing the strength of the noise. The restricted
solid-on-solid (RSOS) model for nonequilibrium growth on a
regular lattice is believed to be described by the KPZ equa-
tion [10]. The dynamic rule of the RSOS growth model is to
randomly select a site x on a substrate and then either to
deposit or to evaporate a particle with unequal probabilities,
h(x)—h(x) =1 (within the solid-on-solid condition), pro-
vided that the restriction on the local height difference

[Vh| = h(x) - h(x")| = 1 (3)

is obeyed between the selected site and the nearest-neighbor
sites. If this RSOS condition is not satisfied, the correspond-
ing deposition or evaporation event is forbidden. No relax-
ation or hopping of the deposited atom is allowed [10]. How-
ever, in regards to the equilibrium RSOS growth with the
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same probabilities for deposition and evaporation, the non-
linear term vanishes and Eq. (1) is reduced to the Edwards-
Wilkinson (EW) equation, given as [11]

o =vV2h+ 5(71). 4)
ot
The growth models, which can be described by the EW equa-
tion, are known to belong to the EW universality class. The
other continuum equation is the fourth-order Herring-
Mullins (HM) equation, describing surface dynamics under
curvature constraints [12],

oh(7,1)

PP vV + (71). (5)

Since Egs. (4) and (5) are linear, one can solve them exactly,
and the growth models described by the HM equation are
known to belong to the HM universality class.

Since the surface structure of many growth processes is
self-affine, most efforts have been concentrated on measur-
ing the surface fluctuations. The surface width W is defined
as the standard deviation or, equivalently, the root-mean-
square fluctuation of the surface height

W(t,L) = ([h(7,0) - k() )2, (6)

where Ah(7,r) are the local height variables of the
d-dimensional interface, h(¢) is their spatial average, and
(+++) denotes the average over many samples. Here, d is
written as a substrate dimension and, therefore, the total di-
mension is d+ 1. The interesting quantities in the growth pro-
cess are the exponents which describe the self-affine surface
structure [4,8,11,13]. The scaling hypothesis is such that in a
finite system of lateral size L, the mean-square fluctuation
W? of the surface height starting from a flat substrate scales
as [13],

WA(L,1) ~ L**g(1/L7) — %8, 1<%,

—L* > (7)

where « and 3 are, respectively, the roughness exponent and
the growth exponent, and the ratio of the two defines the
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dynamic exponent, z=7%. The roughness exponent « is the
quantity that describes the characteristic of the saturated sur-
face fluctuation at a sufficiently late time, and the dynamic
exponent z describes the lateral correlation of the surface
height with a time-dependent length scale &(f)~ "%,

The “equilibrium” RSOS (ERSOS) growth model [10] on
a regular lattice is generally believed to be described by the
EW equation which can be solved exactly [11]. On the other
hand, the KPZ Eq. (1), describing the nonequilibrium RSOS
growth model, is not yet solved except for the one-
dimensional case, and most studies on the RSOS model were
devoted to Monte Carlo simulations [10,14—18]. There have
also been studies regarding both equilibrium and nonequilib-
rium RSOS models on fractal substrates. Despite several pre-
vious studies regarding the growth on various fractal sub-
strates [19,20], there is no simple understanding about the
values of the critical exponents. Therefore, the questions that
might naturally arise are as follows: how do the growth and
roughness exponents 8 and « depend on the fractal sub-
strates? Is there any continuum equation associated with the
discrete models?

In this study, the ERSOS growth model is studied on frac-
tal substrates, in attempting to envision an EW-type discrete
model on fractal substrates, a fractional Langevin equation
related to the model is introduced, and the critical exponents
are calculated by a power-counting method based on the
renormalization-group transformation. Extensive Monte
Carlo simulations are carried out for the ERSOS models on
various fractal substrates, such as the Sierpinski gasket, Si-
erpinski carpet, and checkerboard fractal, all of which are
embedded in two spacial dimensions. It is found that the
values of B and « are not consistent with those obtained
from the known exact results by a simple substitution of the
substrate dimension with the fractal dimension, but com-
pletely correspond to the predictions by a power-counting
method on the fractional Langevin equation.

II. EQUILIBRIUM RSOS MODEL ON FRACTAL
SUBSTRATES

The nonlinear term on the KPZ equation can be controlled
by generalizing the RSOS growth model to allow the evapo-
ration of particles within the RSOS condition. The growth
rule regarding the model is to randomly select a site on a
substrate and to deposit (evaporate) a particle on the site with
the probability p,(p_), when the height configuration satisfies
the restriction in Eq. (3) after the deposition (evaporation)
[10]; otherwise, the deposition (evaporation) process is ig-
nored. The strength of the nonlinearity N\ can be controlled
by adjusting the deposition probability p,. The lateral growth
rate is expected to become proportional to the difference be-
tween the evaporation and the deposition rates [10]. Thus, A
should be zero for the equilibrium growth, in which p,=p_
holds. Therefore, the equilibrium RSOS model on a regular
substrate is well described by the EW equation. The growth
exponents 8 and «, characterized by the EW equation, were
obtained by a direct integration, yielding B=(2-d)/4, «
=(2-d)/2, and z=2.

The ERSOS model on a fractal substrate is now consid-
ered. The term V24 in the EW equation describes the diffu-
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sion process and has symmetries under inversion and rota-
tion in the 7 space. On a fractal substrate, it is known that the
diffusion is anomalous and the dynamic exponent of random
walks zgw, defined by the rms end-to-end distance via (R*)
~?RW_ is larger than 2. Also, no symmetry exists under
either inversion or rotation in usual fractal substrates. There-
fore, we assume that the term associated with diffusion is
VRWh, and introduce a fractional Langevin equation

oh
(9_1‘ = vVRVh + p(F1). (8)

In order to utilize the power-counting approach on the
fractional Langevin equation on fractal substrates, it is con-
sidered that a size x’ Xx’ system is rescaled by a factor b
into the smaller x Xx system, i.e., x’ —bx. Then, in the ¢
> [* limit, the surface width and the evolution time are res-
caled, respectively, as h' =x"*— (bx)“=b*h and t' — b*t. The
noise is distributed over the fractal substrate of x% lattice
sites during the time ¢, where d; is the fractal dimension.
Therefore, the total noise sum in the volume of x’%z’ should
be rescaled into the noise sum in the volume x%. Based on
the equation

f (9(Fo,to) p(7,1))d%rdt = 2T, 9)

it is clear that the noise % should be rescaled as 7%’
— b2 via the central limit theorem. Then, Eq. (8) can
be written in its rescaled form as

ba_zi_]: = PhRWYIRW] 4 p=(drt2)/2 7. (10)

By comparing the power of each term, the following results
are obtained:

I=Zrw, @a= %(ZRW_df)v B= %(1 —i> (11)

ZRW

Therefore, the exponents are described by the two indepen-
dent parameters, zgw and d;. The dynamic exponent of ran-
dom walks on a fractal substrate is given as ZRW=27dr, where
d, is the spectral dimension defined by the density of normal
modes on fractal lattices via p(w)~w®%!. Thus, the results
can be described by both d; and d; as

B=l_ﬂ’ a=df(l—l), Zzz_df. (12)
2 4 d, 2 d,
With these results, the scaling relation
20+ df =Z (13)

is obtained for the fractional Langevin equation. It is, thus,
interesting to examine these results with respect to the ER-
SOS model on various fractal substrates.

The results of the exponents 8 and «, measured by direct
Monte Carlo simulations, are presented in the following sec-
tions with respect to the ERSOS growth model on the Sier-
pinski gasket, checkerboard fractal, and Sierpinski carpet
substrates, in conjunction with the scaling analysis of the
surface width, in order to confirm the exponents.
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III. BOUNDARY CONDITIONS OF FRACTAL
SUBSTRATES

In this section, we describe the boundary conditions of the
selected fractal lattices, utilized for the growth using the ER-
SOS model. We particularly select three typical fractal sub-
strates regarding the growth, i.e., the Sierpinski gasket,
checkerboard fractal, and Sierpiski carpet, as shown in Fig.
1. The construction of these fractals are well described in
Ref. [3], and the iterative growing processes are utilized. The
fractal dimensions are dsg—%, d®= L"lz, and d} —l;—g with
respect to the Sierpinksi gasket, checkerboard fractal and
Sierpinski carpet, respectively.

The lattice sites are defined on the vertices of the base
triangles for the Sierpinski gasket and on the centers of the
base squares for the checkerboard and Sierpnski carpet. The
growth proceeds on the lattice sites of the fractal substrate
and, accordingly, the height variable is defined on those lat-
tice sites. When a particle is deposited or evaporated at the
corner site on the edge, the nearest-neighbor sites to be ex-
amined for the RSOS condition are limited due to the system
boundary. In order to reduce the size effect, it is necessary to
set up a certain boundary condition. In regards to the usual
critical phenomena, the two boundary conditions (such as the
periodic boundary and the free boundary conditions) are em-
ployed, and the former is known to be more successful in
reducing the size effect. Setting up the periodic boundaries
for a checkerboard fractal is rather simple, as can be seen
later. In regards to the Sierpinski gasket, on the other hand,
since the translational invariance is not satisfied, it is not
simple to employ the periodic boundary condition.

Considering that the Sierpinski gasket ABC in Fig. 1 is
the current cell which has been generated up to the third
order and assuming that the current cell is the subcell of a
higher-order generation, the three replicated cells can be as-
sumed to be at the three corner sites, part of which are as
shown with the thin lines. Since the given cell and its repli-
cated cells are of the same structure, the site B may be con-
sidered to be the replicated site of site A in the replicated cell
of the right-hand side. Therefore, when the deposition of a
particle is considered on the site B, the RSOS condition may
be examined regarding the two nearest-neighbor sites of the
site B and two of the site A. The same is applied for the site
C. However, when a deposition on the site A is considered,
the RSOS condition must be examined regarding all the
nearest-neighbor sites of the sites A, B, and C, because A is
the corresponding site to the replicated sites B and C. In
order for this condition to be satisfied, the sites A, B, and C
should be considered as effectively the same site; i.e., when
any of these three sites are selected for deposition, the RSOS
condition must be examined regarding the six neighboring
sites. This boundary condition is referred to as the “periodic”
boundary condition. In this condition, however, growth on
the corner site may be suppressed due to the extra restric-
tions, compared to the growth on other sites, for which the
coordination number is four. It is, however, believed based
on the universality concept that the additional restriction on
the boundary sites is irrelevant; i.e., it does not alter the
critical behavior. In order to confirm this postulate, the “free”
or “reflective” boundary condition is also utilized. With the
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FIG. 1. A Sierpinski gasket (top) and a checkerboard fractal
(middle), generated up to the third order (marked as thick lines),
with parts of the periodically placed replicated cells (marked as thin
lines), and a Sierpinski carpet (bottom). The lattice sites are set at
the center of each square with respect to the checkerboard fractal as
well as a Sierpinski carpet and at the vertices of the triangles with
respect to the Sierpinski gasket.

free boundary condition, the RSOS condition is examined for
all corner sites with the two nearest-neighbor sites in the
given cell; therefore, growth on the boundary site may be
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FIG. 2. Mean-square surface width W? as a function of time
plotted on a double-logarithmic scale for the equilibrium RSOS
model on a Sierpinski gasket substrate generated up to, from bottom
to top, the fifth, sixth, seventh, eighth, ninth, and tenth generations.

elevated slightly due to a lesser number of restrictions. We
find that the two boundary conditions yield the same expo-
nents.

In regards to the checkerboard fractal, the current cell
may be assumed as the central cell of a higher-order genera-
tion, and the four replicated cells are assumed to be at the
four corners of the given cell. When a deposition on the
corner site is considered, the RSOS condition is examined
for one nearest-neighbor site of the selected corner site and
one nearest-neighbor site opposite to the selected site along
the diagonal direction. Therefore, in this case, the number of
nearest-neighbor sites to be examined for the RSOS condi-
tion is two regarding the four boundary sites in the system.

In regards to the Sierpinski carpet, neither the method
applied for the Sierpinski gasket nor that of the checkerboard
fractal can be applicable because the Sierpinski carpet is in-
trinsically different from the other two fractal lattices. While
the two lattices are finitely ramified fractals, the Sierpinski
carpet is an infinitely ramified fractal, i.e., the number of
boundary sites increases as the size of fractal increases. For
this reason, we attempt to employ the free boundary condi-
tion.

IV. NUMERICAL RESULTS

Simulations of the ERSOS growth are performed on frac-
tal substrates with respect to the linear sizes up to L=2'° for
a Sierpinski gasket, up to L=3° for a checkerboard fractal,
and up to L=33 for a Sierpinski carpet.

A. On a Sierpinski gasket

The mean-square surface width is calculated on a Sierpin-
ski gasket regarding the sizes of 2° up to 2!, and the results
are plotted in Fig. 2. Based on the regression fit of the data in
the early time, we obtain 8=0.157 = 0.002. In the long-time
region, the saturated width follows a power-law W(L)~ L?,
and the exponent « is estimated from the data in the inset as
a@=0.367£0.002. From the values of 8 and «, we obtain z
~12.35, which is considerably different from the value on the
regular substrate, z=2. The scaled mean-square surface
width, W?/L?, plotted against the scaled time, ¢/L?, yields a
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FIG. 3. Plot of the scaled mean-square surface width, W2, as a
function of the scaled time on a log-log scale for the equilibrium
model on a Sierpinski gasket.

perfect data collapse, with the exception of the early-time
data, as shown in Fig. 3.

For the random walks on fractal substrates, the dynamic
exponent zpy is identical to the fractal dimension d,, of ran-
dom walks, defined by the mean-square end-to-end displace-
ment of the 7-step random walks, (R?)~ *%». For the Sier-
pinski gasket, di#=13=1.585, d*¥=213=1365, and d**

In5
=2d—dr=% =2.322 [21]. Therefore, the predicted values from

Eq. (12) are B=2(1-124)=0.159 and a="522=0.3685,
which are in complete agreement with the estimates obtained
by the simulations. The dynamic exponent z is also consis-
tent with zgw = 2.322 within a 2% error margin. Therefore, it
is surmised that z=zzyw is generally true with respect to the

equilibrium RSOS model.

B. On a checkerboard fractal

Simulations for the equilibrium RSOS model are also car-
ried out on a checkerboard fractal substrate. The critical ex-
ponents  obtained are $=0.203%£0.002 and «
=0.503 = 0.003, as shown in Fig. 4. The dynamic exponent is
obtained as z=% =2.48. The scaling plot, using the measured
values of the exponents, is shown in Fig. 5. An excellent data
collapse confirms the estimates.
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FIG. 4. Mean-square surface width W? as a function of time
plotted on a double-logarithmic scale for the equilibrium model on
a checkerboard fractal substrate. Data are, from bottom to top, for
L=32,33 3% 35 3% and 37. Plotted in the inset are the data for the
saturated values against the size of the system.
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FIG. 5. Plot of the scaled mean-square surface width W? as a
function of the scaled time on a log-log scale for the equilibrium
model on a checkerboard fractal substrate.

The fractal dimension and the spectral dimension of a
checkerboard fractal are, respectively, dCb—%~1 465 and
dfb fnlnﬁs =1.189 [22] Therefore, the predicted values from
Eq. (12) are B=1-722-=0203 and a=p2(2-1)=1,

which are in complete agreement with our estimates. The

dynamic exponent, z= 01C :f~2 465, is also consistent
with the given estimate within an error margin of less than
1%. Based on these results and those for the Sierpinski gas-
ket, we conclude that the analytical predictions by a power-
counting analysis is amazingly accurate and might even be
exact.

C. On a Sierpinski carpet

Since dy= 1 3 =1.893 and d,=1.802 [23] for the Sierpin-
ski carpet, the predicted values are obtained as 8~0.050 and
a=~0.104. The simulation results, however, yield a larger
value for the exponent 8 and smaller value for a. The regres-
sion slope in the early time varies as the size of system
increases, as shown in Fig. 6 and, for L=3%, data yields the
slope of about 0.18, corresponding to 8=0.09. Considering
the trend of the data, the true value of B appears to be
smaller than this value. By extrapolating the measured values
in the L—o limit, 8=~0.065 is obtained, which is much
closer to but is still slightly off from the predicted value. The

o —— e ——

L= 1
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t

FIG. 6. (Color online) Mean-square surface width W? as a func-
tion of time plotted on a double-logarithmic scale for the equilib-
rium model on a Sierpinski carpet fractal substrate. Data are, from
bottom to top, for L=32, 33, 3%, and 3°.
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value of a may be estimated, based on the data for L=33, 3%,
and 3°, as @=0.142, which is again deviated from the pre-
dicted value. Thus, the exponents for growth on a Sierpinski
carpet were not in perfect agreement with the estimated val-
ues.

It is clear from Fig. 6 that the vertical displacements of
the saturated values Wgat(L) between the two neighboring
sizes are not identical. This implies that the saturated width
may not follow the power-law behavior of Eq. (7). It should
be noted that, in order for the scaling to hold, the saturated
values should be displaced with equal spacing for the two
consecutive sizes, because the sizes are multiples of three.
We believe that this is due to the finite-size effect and, if the
size of system is further increased, data would yield consis-
tent values, with a proper asymptotic growth exponent. The
displacement between the systems of L=3> and 3* and that
between the systems of L=3* and 33 are much smaller in
comparison to that between the systems of L=32 and 3°. This
might be an indication that the inconsistent estimates were
caused by the finite-size effect.

The finite-size effect may also be examined by consider-
ing the ratio of the number of boundary sites, i.e., the sites
that are neighbors to the voids, to the total number of sites at
the kth generation. The ratio decreases as 0.938, 0.805,
0.741, 0.716, 0.706, and 0.702, as k increases from k=2 to
k=17. Plotting these values against 1/k, it is found that the
ratio decreases rapidly for small k£ and appears to approach to
a constant between 0.69 and 0.7 as k— . If this ratio be-
comes smaller, i.e., if more sites with four neighbors exist,
the growth will be suppressed because the RSOS condition
should be examined over more neighboring sites. The
smaller slopes for the larger systems in Fig. 6 are consistent
with this expectation. Therefore, in order for the scaling re-
lation in Eq. (7) to hold, this ratio must be constant and the
size of system must be essentially infinite. (Note that this
ratio is 0.2 with respect to the checkerboard fractal, irrespec-
tive of the size of systems.) However, considering the con-
vergence behavior of the ratio against 1/k, it is expected that
approximate scaling may be observable for systems of k
=7. Since simulations with respect to the systems of size
L=3%, up to 107 time steps are estimated to take more than
several months with an Intel 3.0GHz CPU, even for a single
trial, such simulations are considered to be impossible with
the present systems.

Simulations are also carried out using the periodic bound-
ary condition, assuming that the current system is the lower-
center subcell of a higher-order generation. In this boundary
condition, when a particle is deposited on the right or left
edge sites, the RSOS condition is examined between the site
and its neighboring sites in opposite edges. The results were
found to be basically similar to those in Fig. 6 (not shown).
We also consider the ratio of the boundary area to the vol-
ume. It quickly approaches to zero with the system size L
following L% in both the Sierpinski gasket and the checker
board fractals. However, it decreases slowly as LU for
the Sierpinski carpet of the infinitely ramified fractal. This
could explain the slow convergence of the exponents to the
estimated values in the Sierpinski carpet.
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V. SUMMARY AND CONCLUSIONS

We have studied the surface fluctuations of the equilib-
rium RSOS model on a fractal substrate by introducing a
fractional Langevin equation to describe the model. The
growth exponent, the roughness exponent, and the dynamic
exponent were obtained by a power-counting analysis. The
critical exponents depended upon the intrinsic properties of
the underlying fractal substrates via the fractal dimension
and the spectral dimension, and the dynamic exponent was
the same as that for the random walks. In addition, we ob-
tained the scaling relation 2a+d;=z regarding the ERSOS
model on fractal substrates.

The results were examined numerically via Monte Carlo
simulations regarding the equilibrium growth on a Sierpinski
gasket, checkerboard fractal, and Sierpinski carpet. It was
found that the results regarding the former two fractal sub-
strates were consistent with the analytical predictions within
a margin of error less than 2%. The results for the Sierpinski
carpet were less successful, presumably due to the finite-size
effect, which might be significant for infinitely ramified frac-
tal lattices. Therefore, in order to derive a concrete conclu-
sion on the validity of the predictions with respect to the
Sierpinski carpet substrate, the results regarding the larger
systems is necessary.

The results were summarized in Table I, together with the
results on a critical percolation network taken from Ref. [24],
as well as with those on a three-dimensional (3D) Sierpinski
gasket substrate from Ref. [20]. A critical percolation net-
work is known to be fractal with d;= 2—; and d,=1.31[21] in
two dimensions. The agreements between the predicted val-
ues and the simulation results were excellent. This confirms
that the prediction in Eq. (12) is also successful, even with
respect to random fractals. In regards to the growth on a
Sierpinski gasket embedded in three dimensions, d§g=%
=1.547, and d;=2; thus, it is expected that S~0.113 and
a=0.292, based on Eq. (12). In the previous study, B
=0.110+0.005 and @=0.293+0.005 [20] have been ob-
tained, which are in complete agreement with the predic-
tions.
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TABLE 1. The critical exponents of equilibrium RSOS models
on various fractal substrates.

Models B o z

2D Sierpinski gasket:

Monte Carlo 0.157*£0.002 0.367£0.002 2.35
Equation (12) 0.1587 0.3685 2.322
2D Checkerboard:

Monte Carlo 0.2030.002 0.504£0.003 2.48
Equation (12) 0.2028 0.5 2.465
2D Percolation:

Monte Carlo® 0.176 =0.001  0.509 =0.006  2.89
Equation (12) 0.175 0.510 2.89
3D Sierpinski gasket:

Monte Carlo® 0.110£0.005 0.293+0.005 2.66
Equation (12) 0.1132 0.2925 2.585

aReference [24].
PReference [20].

It is interesting to note that the results in Eq. (12) were the
same as those obtained by Zumofen et al., who examined the
scaling theory with respected to the surface width for the EW
equation on a fractal substrate by means of a different ap-
proach, in which the behavior of the autocorrelation function
of the associated diffusion problem had been studied [25],
considering that the diffusion term V?A of the EW equation
on fractal substrate can be written as X 4(h;,s—h;) with re-
spect to the nearest neighbors [26].

In regards to the nonequilibrium RSOS growth model,
however, a similar approach was not successful, due to the
nonlinear term in the KPZ equation. A deeper understanding
is required and such a study is currently ongoing.
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